Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes

نویسندگان

  • Mark Broadie
  • Özgür Kaya
چکیده

The stochastic differential equations for affine jump diffusion models do not yield exact solutions that can be directly simulated. Discretization methods can be used for simulating security prices under these models. However, discretization introduces bias into the simulation results and a large number of time steps may be needed to reduce the discretization bias to an acceptable level. This paper suggests a method for the exact simulation of the stock price and variance under Heston’s stochastic volatility model and other affine jump diffusion processes. The sample stock price and variance from the exact distribution can then be used to generate an unbiased estimator of the price of a derivative security. We compare our method with the more conventional Euler discretization method and demonstrate the faster convergence rate of the error in our method. Specifically, our method achieves an O(s− 1 2 ) convergence rate, where s is the total computational budget. The convergence rate for the Euler discretization method is O(s− 1 3 ) or slower, depending on the model coefficients and option payoff function. Subject Classifications: Simulation, efficiency: exact methods. Finance, asset pricing: computational methods. Acknowledgement: This paper was presented at seminars at Columbia University, the sixth Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing conference, and INFORMS Annual Meeting in Atlanta. We thank seminar participants and an anonymous referee for helpful comments and suggestions. This work was supported in part by NSF grant DMS-0074637.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PLENARY LECTURES Exact Simulation of Financial Models with Stochastic Volatility and other Affine Jump Diffusion Models

The stochastic differential equations for affine jump diffusion models do not yield exact solutions that can be directly simulated. Discretization methods can be used for simulating security prices under these models. However, discretization introduces bias into the simulation results and a large number of time steps may be needed to reduce the discretization bias to an acceptable level. In thi...

متن کامل

Option pricing under the double stochastic volatility with double jump model

In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...

متن کامل

Extension of Stochastic Volatility Equity Models with Hull-White Interest Rate Process

We present an extension of stochastic volatility equity models by a stochastic Hull-White interest rate component while assuming non-zero correlations between the underlying processes. We place these systems of stochastic differential equations in the class of affine jump diffusion linear quadratic jump-diffusion processes (Duffie, Pan and Singleton [13], Cheng and Scaillet [10]) so that the pr...

متن کامل

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

A Bayesian Analysis of Return Dynamics with Stochastic Volatility and Levy Jumps

We develop Bayesian Markov chain Monte Carlo methods for inferences of continuoustime models with stochastic volatility and infinite-activity Levy jumps using discretely sampled data. Simulation studies show that (i) our methods provide accurate joint identification of diffusion, stochastic volatility, and Levy jumps, and (ii) affine jumpdiffusion models fail to adequately approximate the behav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Operations Research

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2006